全国服务热线:186-5337-0285

罗茨真空泵的特征性能和质量是设计和制造出来

日期:2018-10-05 13:35 人气:
罗茨真空泵的特征性能和质量是设计和制造出来的,设计是保证罗茨泵特征性能和质量的先决条件,工艺则是性能和质量的保证,设计决定了罗茨泵的特征性能,而试验研究更是特征性能的前导和鉴证,为产品的发展提供了设计依据和研究方向。
 
    工艺与试验
 
  工艺是设计质量的保证,但又必须通过试验来验证,试验结果又反过来促进工艺的改进。罗茨泵转子加工后的形状和啮合间隙是直接影响罗茨真空泵零流量压缩比和最大容许压差的关键。转子的形状直接影响到转子之间的啮合间隙,间隙过小,不能承受最大容许压差的考验,也就会影响泵安全运转的可靠性。罗茨泵的温度与压差成正比,随着压差的增加,泵温会越来越高,热膨胀将使转子之间的间隙越来越小,甚至发生碰撞和尖锐的噪声,严重时转子之间将会卡住。
 
  间隙过大或间隙不均匀,将使罗茨泵通过转子之间的间隙由出口向入口返流的气体增加,零流量压缩比下降。零流量压缩比与最大容许压差是相互制约的一对矛盾,设计时必须统筹兼顾,既要保证间隙的均匀性,又要保证它的合理性。
 
  罗茨泵转子与侧盖之间的间隙也是直接影响罗茨泵零流量压缩比和最大容许压差的关键。在高压差运转时,转子温度很高,由于长度方向的热膨胀,使转子有一定的伸长。泵体温度相对比较低,伸长量不大,为了保证运转的可靠性,所以在转子的长度方向与两侧盖之间保持了一个适当的间隙。为了便于间隙的控制,通常设一端为固定端,它的间隙比较小,另一端为活动端,使转子在长度方向的伸长只能向活动端延伸。
 
  当然泵缸和转子的长度公差必须由加工工艺来保证,转子与侧盖间的间隙调整则由装配工艺来执行。为了保证上述间隙调整工作的正常进行,首要的是,要确保固定端是真正的固定的。根据我们的实践经验,它的关键在于轴承,要选用质量好、精度高的轴承。对罗茨泵而言,要确保固定端的固定,轴承的轴向窜动应当越小越好,但轴承的数据中通常没有轴向游隙这一项,实际上径向游隙越小,表明它的相对转动的零部件之间的间隙就越小,轴向游隙也就越小,轴向窜动就小。需要注意的是,同一只轴承的轴向游隙要大于径向游隙,因此要知道轴承的轴向游隙最好实际测量。
 
  上述间隙究竟控制为多少才是最合适的呢?必须通过试验来确定。为此我们曾作过多种多样的、超负荷的、甚至是破坏性试验,特地通过工艺安排,制作了各相关部位、多种间隙的罗茨泵,按国外先进标准和同类产品要求,做了数月的各种试验,也损坏了好多台泵,得出了符合国内实际情况的一系列间隙数据。
 
  满负荷、超负荷的研究性深入试验使我们发现了不少问题,真空技术网认为运转中转子与泵体的碰擦就是其中之一。罗茨真空泵在最大容许压差下运转1h,泵体出口处的气流温度高达240℃~260℃,转子温度基本上也在这个范围内,由于出口处泵体和转子都处于高温状态下,所以二者之间虽有一定程度的温差,但也一般不会发生碰擦;而在泵进口处则不是如此,因为这里没有对气体进行压缩,所以进口处泵体的温度一般只有40℃~50℃,进口处泵体与转子的温差高达200℃以上,如在进口处仍然保持原来的间隙,则很难保证泵体与转子之间的热膨胀而不发生碰擦;如将进、出口处的间隙都放大,则势必影响零流量压缩比,因此只能将进口处泵体与转子间的间隙适当放大。
 
  此外,罗茨泵的转子轴通常属于细长轴类型,在径向受力的情况下会产生程度不同的挠度,在罗茨泵进行最大容许压差试验时,或在高压差条件下工作时,转子轴所受力的方向是从出口指向进口的,因此也须将进口处泵体与转子间的间隙适当增加。
 
  根据这两种联合作用的情况,为避免转子与泵体进口处发生碰擦,必须在转子轴中心与泵缸中心之间作适当的工艺调整,将转子轴中心适当下移(相对于泵缸中心),这样将使泵出口处的间隙适当减少,进口处的间隙适量放大,既不影响零流量压缩比,又保证了高压差运转时的可靠性。通过工艺改进,既解决了问题,又进一步提高了泵的质量。
 
  轴承的轴向游隙也是试验中发现的一个重要问题,我们曾遇到过这样的一个情况,一批罗茨泵在最大容许压差试车时,有多台泵端面卡死,拆检发现泵的相关转动零部件公差都符合要求,一时也找不出其它原因。为此我们随意抽取了10 台泵,送试验室做进一步严格试验,也发现
 
  有数台罗茨真空泵的端面卡死。零部件尺寸检测也都合格,最后怀疑是否是轴承的间隙有问题,结果发现,同一批购入的所谓“进口”轴承中,只有少数几只轴承的轴向窜动(游隙)为0.05mm,大部分都在0.25mm~0.30mm,显然这是一批冒牌的轴承,这样的轴承用到罗茨泵上,固定端几乎变成了活动端,正常的间隙就无法保证了。自此以后,严格规定轴承采购必须从正规渠道进货,轴承进库随机抽检,彻底杜绝了上述事件的再现。因此,采购也是一道工序,也必须严格尊循有关规定。